
a.
b.
c.
d.
e.
f.
g.
h.
i.
j.

Lähtekoodi halduse ja ehitamise nõuded arendajale
Versioonihalduse kasutamine

Tarkvara lähtekoodi halduseks tuleb kasutada aadressil asuvad GIT repositooriumi (ligipääs antakse projekti põhiselt).https://source.smit.sise
Tarkvara versioonihalduses jälgitakse üldises mõistes protsessi () või "git-flow" http://nvie.com/posts/a-successful-git-branching-model/ "feature-

 () protsessi.branche-workflow" https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
"Git-flow" lähenemist on sobilikum kasutada siis, kui tarkvara versioonide on aeglasem ja harvem ning versioonides toimuvad
stabiliseerimisperioodid, samuti kui on vaja mitut erineva funktsionaalsusega versiooni pikaajaliselt toetada. Teine mudel sobib neile kes on
rohkem automatiseerinud oma paigaldus ja tarneprotsessid ning kasutavad kas või "Continuous Delivery" "Continuous Deployment"
töövooge.

Iga JIRA pileti realiseerimise alguses loob arendaja JIRA abil (kasutades JIRA sees pileti juures käsku create branche) nimelisest develop
harust endale vastava konvensiooni (vt. joonis) põhiselt nimelise haru kus arendust tehakse.feature/xxx
Konfliktide vältimiseks peab kesksest harust järjepidevalt enda harusse muudatused mestima.
Piletis realiseeritud lähtekoodi üleandmiseks SMIT-ile tuleb minna versioonihaldus keskkonna (vastava tarkvara ruumi https://source.smit.sise)
ning valida sealt tab ning luua uus , kus tuleb määrata lähteharuks enda tehtud arendusharu ning lõppharuks keskne pull-requests pull-request
haru. Ülevaatajaks tuleb valida SMIT poolne arendaja ning sisuks täiendavad kommentaarid, mida silmas pidada antud tarnes (näiteks et muutus
konfiguratsioon või baas vms).

Tarne üleandmise eelduseks on, et üleantav kood vastab kõikidele kokkulepitud nõuetele, mis arenduse alguses on fikseeritud või on
konkreetsed puudused toodud välja kirjelduses;pull-requesti
Tarne loetakse vastuvõetuks, kui tarneharus oleva koodiga on toimunud vastavad tegevused:

kood kompileerub SMIT ehitusserveris
koodi staatiline analüsaator ei leia koodist vigu (kasutada Bitbucket Sonar pluginat code review raames või Bamboos Sonar taske)
ühiktestid jooksevad läbi ilma vigadeta
integratsioonitestidjooksevad läbi ilma vigadeta
funktsionaalsed testid jooksevad läbi ilma vigadeta
Koodi testide kattuvuse analüüs näitab et ei ole toodetud juurde ärikriitilist koodi, mis on testidega katmata
arhitekt on tarne muudatustele teinud koodi analüüsi ja need heaks kiitnud
kood on ilma konfiliktideta süsteemi poolt mestitud harusse (on täidetud)develop pull-request

 develop harust ehitatud versioon on paigaldunud arenduskeskkonda ja sinna on võimalik sisselogida
Kõik tarnes sisalduvad on seotud konkreetsete JIRA piletinumbritega kujul XXXX-YYYcommitid

Pull-request-i kinnitamisel automaatselt kustutatakse vastav partneri poolt tehtud haru ära, kui mestimine on olnud edukas;
Pull-request-ii võib SMIT tagasi lükata, kui seal esineb puudusi või alustada seal sees dialoogi puuduste kõrvaldamiseks (koodi ülevaatuse
tegemisel lisatakse kommentaarid otse koodi ridade vahele);
Arendaja peab arendusega seotud dokumentatsiooni kandma SMIT’i wikisse (https://wiki.smit.sise), vastava tarkvara ruumi (v.a paigaldusjuhend
mis läheb koodi juurde versioonihaldusesse);
Arendaja peab alati arendusi tegema JIRA (https://jira.smit.sise) piletite raames (iga koodimuudatus, mida soovitakse kesksesse
versioonihaldusesse saata, peab sisaldama JIRA piletinumbrit) ning muutma nende staatuseid vastavalt arendusele.

Bamboo (CI/CD) kasutamine

Igal tarkvaral on bamboos defineeritud 1 ehitusplaan, mis ehitab ennast " " või " " plaani pealt automaatselt (haru valik sõltub, develop master
kumba protsessi kasutatakse koodi halduseks). Arendajad peaksid oma arendusi tegema feature harudes, mida automaatselt Bamboo on
võimeline ehitama.

https://source.smit.sise
http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://source.smit.sise)

Bamboo ehitusplaan ehitab koodi, teeb koodile staatilist analüüsi, võimalusel turvaanalüüsi, jooksutab testid ning Bamboo paigaldusplaan
paigaldab lõpuks rakenduse määratud keskkonda.
"Git-flow" puhul on reeglina ehitusplaan liidestatud " haruga ning paigaldatakse tulem arenduskeskkonda, testi ja toodangu jaoks develop"
versioonid tekivad harude pealt ("release" harud reeglina), mida paigaldatakse Bamboo kaudu käsitsi.
"Feature-branche-workflow" protsessi puhul on ehitusplaan liidestatud " haruga, mille tulemus paigaldatakse automaatselt sobivasse master"
keskkonda. Võimalus on selle kõrvale luua ka täiendavaid harusid ja siduda neid konkreetse keskkonnaga.
Toodangu keskkonda paigaldus tehakse reeglina käsitsi Bamboo sees ning sinna paigaldatakse sama tulem, mis läks testi.

	Lähtekoodi halduse ja ehitamise nõuded arendajale

